If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-24X+34=0
a = 1; b = -24; c = +34;
Δ = b2-4ac
Δ = -242-4·1·34
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{110}}{2*1}=\frac{24-2\sqrt{110}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{110}}{2*1}=\frac{24+2\sqrt{110}}{2} $
| n+8=42;n=36 | | 2(54)=3n | | 0.2(x-1.6)+0.4=2 | | z/3−1=1 | | b-3/5=8 | | 7a+5=40(10,4,5) | | 7/8m-1/2=3/12m+5 | | 3z+57=z+55 | | 28=−5−11x | | 4n-3=n+24 | | 3a+36=a+42 | | 5x+x^2=82 | | 11+5x=4+x | | 2p-90=p-39 | | 5y+7=7y-9 | | 9x-6=8x+28 | | 10t=13t-12 | | 56=k-4 | | 1/3*75+2/3*60=x | | 3n-9=n+17 | | 7u-1=5u+13 | | 18*12=x*4 | | 8x-17=3x+8 | | 7x+x2x=48 | | 18x12=Lx4 | | f(-2)=4(-2)^4-(-2)^3+3(-2)^2+5(-2)-3 | | d+4.06+8.4d=9.7d+5.77 | | 15+x=25-x | | 12p+31=3p+40 | | s-8=-12 | | 〖5x〗^2=375 | | 4w-3=9w-18 |